• 文献标题:   Sulfonated polyaniline-encapsulated graphene@graphitic carbon nitride nanocomposites for significantly enhanced photocatalytic degradation of phenol: a mechanistic study
  • 文献类型:   Article
  • 作  者:   JILANI A, REHMAN GU, ANSARI MO, OTHMAN MHD, HUSSAIN SZ, DUSTGEER MR, DARWESH R
  • 作者关键词:  
  • 出版物名称:   NEW JOURNAL OF CHEMISTRY
  • ISSN:   1144-0546 EI 1369-9261
  • 通讯作者地址:   King Abdulaziz Univ
  • 被引频次:   0
  • DOI:   10.1039/d0nj03684f
  • 出版年:   2020

▎ 摘  要

The discharge of organic pollutants such as phenols and their derivatives in industrial effluents is a major threat to potable water, leading to a global requirement of cost-effective novel materials for decontamination to get high-quality water. In view of these concerns, sulfonated polyaniline, (s-PANI)@graphitic carbon nitride (g-C3N4) and its nanocomposites with graphene (GN) were synthesized via in situ oxidative polymerization of aniline in the presence of g-C3N4 and GN. The weight ratio of GN varied as 1, 3, and 5% of the weight of g-C3N4. The resulting s-PANI@g-C3N4 and s-PANI@g-C3N4/GN((1-5%)) composites were characterized in terms of structural, optical, morphological, and surface chemical state changes through X-ray diffraction (XRD), UV-visible diffuse absorbance spectroscopy, field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS). The prepared nanocomposites were analyzed for their ability to degrade phenol moieties by high-performance liquid chromatography (HPLC). The results revealed enhanced photocatalytic degradation with GN-based sulfonated s-PANI@g-C3N4/GN((1-5%)). The nanocomposite with 1% GN loading showed the highest photocatalytic activity in comparison with nanocomposites containing 3% and 5% GN. The enhancement of photocatalytic activity could be attributed to the involvement of the sp(2) carbon atoms, the interaction of the O = C carbon atoms, and the high migration efficiency of charge carriers. However, higher amounts of GN (3 to 5%) caused a negative shielding effect by impeding charge recombination, thereby resulting in reduced photocatalytic activities of these composites. The proposed methodology can be a potential route for the elimination of phenolic compounds in the treatment of natural water reservoirs.