▎ 摘 要
Here we study subwavelength gratings for coupling into graphene plasmons by means of an analytical model based on transformation optics that is not limited to very shallow gratings. We consider gratings that consist of a periodic modulation of the charge density in the graphene sheet, and gratings formed by this conductivity modulation together with a dielectric grating placed in close vicinity of the graphene. Explicit expressions for the dispersion relation of the plasmon polaritons supported by the system, and reflectance and transmittance under plane wave illumination are given. We discuss the conditions for maximising the coupling between incident radiation and plasmons in the graphene, finding the optimal modulation strength for a conductivity grating.