▎ 摘 要
Electrochemical surface-enhanced Raman scattering measurements of single layer graphene provide unique information on resonant excitation induced by localized surface plasmons under controlled electron or hole doping. The highly confined electromagnetic field from the LSPs of the Au nanodimer structures prepared on defect-free graphene can generate holes and electrons of the electrochemical potentials beyond the limit of far-field light illumination. The electrochemical in situ SERS spectra prove nonzero wavevector excitation through the observation of normally forbidden Raman bands in graphene. The present findings point to a novel approach to breaking the limit of optoelectronic interactions and photochemical reactions of graphene and other semiconductors.