• 文献标题:   Multifunctional Lanthanide-Doped Binary Fluorides and Graphene Oxide Nanocomposites Via a Task-Specific Ionic Liquid
  • 文献类型:   Article
  • 作  者:   SHARMA RK, GHORA M, CHOURYAL YN, GANGULY T, ACHARJEE D, MONDAL DJ, KONAR S, NIGAM S, GHOSH P
  • 作者关键词:  
  • 出版物名称:   ACS OMEGA
  • ISSN:   2470-1343
  • 通讯作者地址:  
  • 被引频次:   3
  • DOI:   10.1021/acsomega.1c06875 EA MAY 2022
  • 出版年:   2022

▎ 摘  要

Graphene oxide-based nanocomposites (NCMs) exhibit diverse photonic and biophotonic applications. Innovative nanoengineering using a task-specific ionic liquid (IL), namely, 1-butyl-3-methyl tetrafluoroborate [C(4)mim][BF4], allows one to access a unique class of luminescent nanocomposites formed between lanthanide-doped binary fluorides and graphene oxide (GO). Here the IL is used as a solvent, templating agent, and as a reaction partner for the nanocomposite synthesis, that is, "all three in one". Our study shows that GO controls the size of the NCMs; however, it can tune the luminescence properties too. For example, the excitation spectrum of Ce3+ is higher-energy shifted when GO is attached. In addition, magnetic properties of GdF3:Tb3+ nanoparticles (NPs) and GdF3:Tb3+-GO NCMs are also studied at room temperature (300 K) and very low temperature (2 K). High magnetization results for the NPs (e.g., 6.676 emu g(-1) at 300 K and 184.449 emu g(-1) at 2 K in the applied magnetic field from +50 to -50 kOe) and NCMs promises their uses in many photonic and biphotonic applications including magnetic resonance imaging, etc.