▎ 摘 要
Molecular dynamics (MD) simulations were performed to study the torsional characteristics of a graphene nanoribbon encapsulated in a single-walled carbon nanotube (GNR@SWCNT) with different chiralities at different temperatures. Based on the simulations, the relationship between the shear stress and the twist angle was obtained. The maximum shear stress increases with an increase in chirality. However, the corresponding twist angle decreases with increasing chirality. GNR@SWCNT withstands a smaller twist angle compared with a single SWCNT. In addition, the interaction force between the GNR and the SWCNT increases with increasing temperature. GNR@SWCNT at an elevated temperature is easier to break during torsion with a lower twist angle. The results are valuable for the design of nanocomposites composed of carbon nanotubes and graphene materials. (C) 2016 Elsevier B.V. All rights reserved.