▎ 摘 要
We have explored the mechanical strain effects on the magnetotransport in graphene with a 1D electrostatic periodic potential in the presence of a perpendicular magnetic field. We find that, in a strong magnetic field regime, the conductivity exhibits a superposition of the Shubnikov-de Haas and Weiss oscillations in each valley due to the electrical modulation. Especially, the strain removes the valley degeneracy of Landau levels in inversion symmetric Dirac cones. Accordingly, this causes the valley-dependence of the conductivity. These phenomena, absent in a freestanding graphene, are a consequence of the anomalous spectrum of carriers in a fully stained graphene. (C) 2015 Elsevier B.V. All rights reserved.