▎ 摘 要
A nonlocal quantum-mechanical model is employed to compute plasmonic excitations of graphene in the presence of an impurity potential. A full diagonalization of the polarization operator is performed, allowing the extraction of all its poles. It is demonstrated that impurities induce the formation of nanoscale localized plasmonic modes. It is also shown that the chemical potential and impurity strength can be tuned to control target features of the localized modes, making graphene an intrinsic plasmonic material. These predictions can be tested by scanning tunneling microscopy experiments.