• 文献标题:   A High-Performance Graphene Oxide-Doped Ion Gel as Gel Polymer Electrolyte for All-Solid-State Supercapacitor Applications
  • 文献类型:   Article
  • 作  者:   YANG X, ZHANG F, ZHANG L, ZHANG TF, HUANG Y, CHEN YS
  • 作者关键词:   graphene oxide, ionic liquid, ion gel, gel polymer electrolyte, allsolidstate supercapacitor
  • 出版物名称:   ADVANCED FUNCTIONAL MATERIALS
  • ISSN:   1616-301X EI 1616-3028
  • 通讯作者地址:   Nankai Univ
  • 被引频次:   188
  • DOI:   10.1002/adfm.201203556
  • 出版年:   2013

▎ 摘  要

A high-performance graphene oxide (GO)-doped ion gel (P(VDF-HFP)-EMIMBF4-GO gel) is prepared by exploiting copolymer (poly(vinylidene fluoride-hexafluoro propylene), P(VDF-HFP)) as the polymer matrix, ionic liquid (1-ethyl-3-methylimidazolium tetrafluoroborate, EMIMBF4) as the supporting electrolyte, and GO as the ionic conducting promoter. This GO-doped ion gel demonstrates significantly improved ionic conductivity compared with that of pure ion gel without the addition of GO, due to the homogeneously distributed GO as a 3D network throughout the GO-doped ion gel by acting like a ion highway to facilitate the ion transport. With the incorporation of only a small amount of GO (1 wt%) in ion gel, there has been a dramatic improvement in ionic conductivity of about 260% compared with that of pure ion gel. In addition, the all-solid-state supercapacitor is fabricated and measured at room temperature using the GO-doped ion gel as gel polymer electrolyte, which demonstrates more superior electrochemical performance than the all-solid-state supercapacitor with pure ion gel and the conventional supercapacitor with neat EMIMBF4, in the aspect of smaller internal resistance, higher capacitance performance, and better cycle stability. These excellent performances are due to the high ionic conductivity, excellent compatibility with carbon electrodes, and long-term stability of the GO-doped ion gel.