• 文献标题:   Optical surface breather in graphene
  • 文献类型:   Article
  • 作  者:   ADAMASHVILI GT, KAUP J
  • 作者关键词:  
  • 出版物名称:   PHYSICAL REVIEW A
  • ISSN:   2469-9926 EI 2469-9934
  • 通讯作者地址:   Tech Univ Georgia
  • 被引频次:   7
  • DOI:   10.1103/PhysRevA.95.053801
  • 出版年:   2017

▎ 摘  要

A theory of an optical breather of self-induced transparency for small area surface plasmon-polariton waves is constructed. The wave equation for an optical nonlinear electric field consisting of surface transverse magnetic modes, traveling along a two-dimensional layer of atomic systems (or semiconductor quantum dots), with a graphene monolayer (or graphene-like two-dimensional material), are shown to reduce to the nonlinear Schrodinger equation with damping. It is also shown that damped small intensity surface plasmon-polariton breathers can propagate in such a system and its characteristic parameters depends on the connected media, graphene conductivity, transition layer and transverse structures of the surface plasmon polariton. Explicit analytical expressions for the parameters of an optical surface breather are given. The breather and the soliton in graphene are compared with each other and the differences between their properties are contrasted.