▎ 摘 要
We theoretically investigate the thermoelectric properties of zigzag graphene nanoribbons in the presence of extended line defects, substrate impurities, and edge roughness along the nanoribbon's length. A nearest-neighbor tight-binding model for the electronic structure and a fourth nearest-neighbor force constant model for the phonon bandstructure are used. For transport, we employ quantum mechanical non-equilibrium Green's function simulations. Starting from the pristine zigzag nanoribbon structure that exhibits very poor thermoelectric performance, we demonstrate how after a series of engineering design steps the performance can be largely enhanced. Our results could be useful in the design of highly efficient nanostructured graphene nanoribbon-based thermoelectric devices. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.3688034]