▎ 摘 要
Electrocatalytic water splitting has huge potential for generating hydrogen fuel. Its wide application suffers from high energy loss and sluggish reaction kinetics. The adoption of appropriate electrocatalysts is capable of reducing the over potential and accelerating the reaction. Present research mainly focuses on adjusting electrocatalysts, but the performances are also dependent on other parameters. Therefore, the development of an efficient strategy to enhance electrocatalytic performance through integrating with other driving force, especially a renewable driving force, is of great interest. Herein, we present a photothermal-effect-driven strategy to promote the electrocatalytic hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) activities of nickel/reduced graphene oxide (denoted as Ni/RGO) bifunctional electrocatalysts. The Ni/RGO composite exhibited significant enhancement of activities after exposure to light irradiation (49 mV and 50 mV decrease of overpotential at 10 mA/cm(2) for HER and OER, respectively). It was found that the improved electrocatalytic activities arose from the photothermal effect of Ni/RGO, which can efficiently facilitate the thermodynamics and kinetics of electrocatalytic reactions. Furthermore, the photothermal-effect-induced enhancement for electrocatalysis showed good stability, indicating its promising potential in practical application.