• 文献标题:   Plasmonic silicon Schottky photodetectors: The physics behind graphene enhanced internal photoemission
  • 文献类型:   Article
  • 作  者:   LEVY U, GRAJOWER M, GONCALVES PAD, MORTENSEN NA, KHURGIN JB
  • 作者关键词:  
  • 出版物名称:   APL PHOTONICS
  • ISSN:   2378-0967
  • 通讯作者地址:   Johns Hopkins Univ
  • 被引频次:   8
  • DOI:   10.1063/1.4973537
  • 出版年:   2017

▎ 摘  要

Recent experiments have shown that the plasmonic assisted internal photoemission from a metal to silicon can be significantly enhanced by introducing a monolayer of graphene between the two media. This is despite the limited absorption in a monolayer of undoped graphene (similar to pi alpha = 2.3%). Here we propose a physical model where surface plasmon polaritons enhance the absorption in a single-layer graphene by enhancing the field along the interface. The relatively long relaxation time in graphene allows for multiple attempts for the carrier to overcome the Schottky barrier and penetrate into the semiconductor. Interface disorder is crucial to overcome the momentum mismatch in the internal photoemission process. Our results show that quantum efficiencies in the range of few tens of percent are obtainable under reasonable experimental assumptions. This insight may pave the way for the implementation of compact, high efficiency silicon based detectors for the telecom range and beyond. (C) 2017 Author(s).