▎ 摘 要
Evanescent wave absorption based fiber optic sensor with fluoride core, doped silica clad, amorphous silicon layer, and graphene monolayer is studied in near infrared for highly sensitive and precise recognition of melanoma in liver tissues. The findings reveal that by carefully tuning the graphene's dispersive behavior through doping and operating at slightly increased temperature (above room temperature) can lead to significantly high sensitivity and fine resolution. An optimum combination 1550nm wavelength, 0.6eV chemical potential (of graphene), and 311.1K temperature' leads to 112.211mW/RIU sensitivity and 8.91x10(-10) RIU resolution. An ultrathin silicon layer leads to better performance along with improved stability against possible oxidation and thermal issues. A detailed survey finds that the above performance (resolution, in particular) is largely superior than the fiber sensors based on different techniques. The proposed sensor can be amended accordingly for biomedical applications needing high precision of tissue/process monitoring.