▎ 摘 要
It is a challenge to design nanofiller reinforced self-healing nanocomposites with both improved mechanical properties and highly efficient self-healing properties. In this work, we report a self-healing polysiloxane nanocomposite using furan-functionalized graphene (G-FA) as reinforcement based on Diels-Alder (DA) chemistry. The formed interactions between G-FA and polysiloxane chains were reversible DA bonds, which negligibly affected the nanocomposites healing efficiency. The self-healing polysiloxane nanocomposite with 6% G-FA has a tensile strength of 0.25MPa that was improved by 140% when compared to an elastomer without G-FA. The healable polysiloxane nanocomposite recovered more than 90% of its tensile strength and 98% of its elongation-at-break, demonstrating that the nanocomposite exhibited highly efficient self-healing properties. (c) 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019, 136, 47725.