▎ 摘 要
The fractional quantum Hall effect is a canonical example of electron-electron interactions producing new ground states in many-body systems. Most fractional quantum Hall studies have focussed on the lowest Landau level, whose fractional states are successfully explained by the composite fermion model. In the widely studied GaAs-based system, the composite fermion picture is thought to become unstable for the N >= 2 Landau level, where competing many-body phases have been observed. Here we report magneto-resistance measurements of fractional quantum Hall states in the N = 2 Landau level (filling factors 4 < vertical bar n vertical bar < 8) in bilayer graphene. In contrast with recent observations of particle-hole asymmetry in the N = 0/N = 1 Landau levels of bilayer graphene, the fractional quantum Hall states we observe in the N = 2 Landau level obey particle-hole symmetry within the fully symmetry-broken Landau level. Possible alternative ground states other than the composite fermions are discussed.