• 文献标题:   Electrooxidation of glucose by binder-free bimetallic Pd1Ptx/graphene aerogel/nickel foam composite electrodes with low metal loading in basic medium
  • 文献类型:   Article
  • 作  者:   TSANG CHA, HUI KN, HUI KS
  • 作者关键词:   palladium, platinum, graphene aerogel, glucose cell
  • 出版物名称:   ELECTROCHIMICA ACTA
  • ISSN:   0013-4686 EI 1873-3859
  • 通讯作者地址:   Univ Macau
  • 被引频次:   1
  • DOI:   10.1016/j.electacta.2017.11.064
  • 出版年:   2017

▎ 摘  要

Many 2D graphene-based catalysts for electrooxidation of glucose involved the use of binders and toxic reducing agents in the preparation of the electrodes, which potentially causes the masking of original activity of the electrocatalysts. In this study, a green method was developed to prepare binder-free 3D graphene aerogel/nickel foam electrodes in which bimetallic Pd-Pt NP alloy with different at% ratios were loaded on 3D graphene aerogel. The influence of Pd/Pt ratio (at%: 1:2.9, 1:1.31, 1:1.03), glucose concentration (30 mM, 75 mM, 300 mM, 500 mM) and NaOH concentration (0.1 M, 1 M) on electrooxidation of glucose were investigated. The catalytic activity of the electrodes was enhanced with increasing the Pd/Pt ratio from 1:2.9 to 1:1.03, and changing the NaOH/glucose concentration from 75 mM glucose/0.1 M NaOH to 300 mM glucose/1 M NaOH. The Pd1Pt1.03/GA/NF electrode achieved a high current density of 388.59 A g(-1) under the 300 mM glucose/1 M NaOH condition. The stability of the electrodes was also evaluated over 1000 cycles. This study demonstrated that the Pd1Pt1.03/GA/NF electrode could be used as an anodic electrode in glucose-based fuel cells. (c) 2017 Elsevier Ltd. All rights reserved.