• 文献标题:   Adsorption of phosgene molecule on the transition metal-doped graphene: First principles calculations
  • 文献类型:   Article
  • 作  者:   ZHANG T, SUN H, WANG FD, ZHANG WD, TANG SW, MA JM, GONG HW, ZHANG JP
  • 作者关键词:   phosgene, transition metal doped graphene, adsorption, optical electrical propertie, sensor, dft
  • 出版物名称:   APPLIED SURFACE SCIENCE
  • ISSN:   0169-4332 EI 1873-5584
  • 通讯作者地址:   Northeast Normal Univ
  • 被引频次:   17
  • DOI:   10.1016/j.apsusc.2017.06.229
  • 出版年:   2017

▎ 摘  要

The adsorption of the phosgene molecule on pristine graphene and transition metal doped (TM = Zr, Mo, Ti, Mn, Fe, Co) graphene is investigated using the first principles method based on density functional theory. The nature of interaction between the phosgene molecule and pristine graphene or transition metal doped graphene (TM-doped graphene) is discovered by geometries, adsorption energies, Mulliken charge distribution, density of states analysis and UV spectrum. Computational results show that the interaction between the phosgene molecule and pristine graphene is a weak physisorption. But doping with transition metals results in stronger chemical adsorption. This is due to the formation of a chemical bond between the metal atom and oxygen atom of phosgene, which makes TM-doped graphene really promising material for phosgene removal. TM-doped graphene also exhibits different electronic properties after adsorbing phosgene, compared with pristine graphene. Furthermore, the calculations reveal that UV spectrum of the TM-doped graphene is modified by the phosgene adsorption. Thus, the significant variations in electronic and optical properties of the TM-doped graphene sheet as interacting with the phosgene can be utilized to detect the phosgene. (C) 2017 Elsevier B.V. All rights reserved.