▎ 摘 要
A C-60-PEI-rGO hybrid was prepared by incorporating the fullerene (C-60) on the surface of PEI-modified reduced graphene oxide (rGO) and then used to modify the epoxy (EP) resin. Subsequently, the structure of GO and C-60-PEI-rGO hybrid were well characterized, showing that the C-60 was homogenously anchored on the surface of PEI-rGO. The flame retardancy, mechanical properties, and thermal stability of as-prepared C-60-PEI-rGO/EP nanocomposites were systematically investigated. Results show that the C-60-PEI-rGO hybrid exhibits high flame retarding efficiency for EP. Specifically, the time to ignition of epoxy increases from 68 to 89s with the addition of 1.0wt% C-60-PEI-rGO, which are unusual in polymer nanocomposites. In the meantime, the peaks of the heat release rate and total heat release of the modified epoxy reduce by 40.0% and 15.6%, respectively. The synergistic flame retardant mechanism of C-60-PEI-rGO to EP is attributed to its unique structure combining both the high efficiency in capturing free radicals by C-60, the barrier effect of layered of rGO and increase of crosslinking density of epoxy. It is shown that the thermal stability and mechanical properties of epoxy are simultaneously improved with the addition of C-60-PEI-rGO. This work may pioneer a new and efficient method to fabricate fire retardant thermosetting resins with simultaneously other improved properties.