• 文献标题:   Facile and scalable production of heterostructured ZnS-ZnO/Graphene nano-photocatalysts for environmental remediation
  • 文献类型:   Article
  • 作  者:   LONKAR SP, PILLAI VV, ALHASSAN SM
  • 作者关键词:  
  • 出版物名称:   SCIENTIFIC REPORTS
  • ISSN:   2045-2322
  • 通讯作者地址:   Khalifa Univ Sci Technol
  • 被引频次:   12
  • DOI:   10.1038/s41598-018-31539-7
  • 出版年:   2018

▎ 摘  要

A facile and eco-friendly strategy is described for the synthesis of ZnS-ZnO/graphene heterostructured nano-photocatalysts for the first time. This solvent-free and technologically scalable method involves solid-state mixing of graphite oxide (GO), Zn salt and surfeit yet non-toxic elemental sulfur using ball-milling followed by thermal annealing. The as-formed hybrids are composed of uniformly distributed in-situ formed ZnS-ZnO nanoparticles simultaneously within the thermally reduced GO (graphene) matrix. A series of hybrid compositions with varying content of ZnS/ZnO and graphene were prepared and thoroughly characterized. Further, the effect of heterostructure composition on the photocatalytic properties was investigated under visible-light illumination. The synergistic ZnS-ZnO/graphene hybridization promoted the band-gap narrowing compared to the pristine ZnS nanoparticles. The ZnS: ZnO composition was controlled by graphite oxide under thermal treatment and observed to be a crucial factor in enhancement of photocatalytic activity. As a proof of concept, the phase optimized and surface enhanced ZnS-ZnO/graphene nano-photocatalysts was tested towards visible light driven photocatalytic degradation of environmentally harmful organic dyes and toxic phenol molecules from aqueous media. The presented cost-effective strategy provides high potential in large-scale production of heterostructured nano-photocatalysts for environmental remediation and photocatalytic greener production of hydrogen.