▎ 摘 要
The conditions of formation of local states in the energy spectra of semi-infinite carbon nanotubes with regularly arranged atoms adsorbed on the outer surface are studied in the pi-electron approximation. The influence of the adsorption type (physical and chemical), the donor-acceptor properties of adsorbed atoms, their concentration on the graphene surface, and the nanotube diameter on the characteristics of the local states that arise is considered. It is shown that both physical and chemical adsorptions cause a decrease in the band gap separating the upper filled energy band and the lower vacant band. This effect can significantly change the electrical and optical properties of the nanotubes under consideration in comparison with the initial "pure" tubulene.