▎ 摘 要
Graphene-based hybrid nanomaterials are interestingly being considered in expanding fields such as supercapacitors, biosensors, biomedicine, and pathogen deactivation. Surface properties of the two-dimensional (2D) hybrids are crucial in dictating their safety and efficacy. Therefore, concise and accurate functionalization of the pristine 2D nanomaterials is very important for facilitating their clinical trials. In this case, some of the promising candidates for effective and controllable functionalization of graphene derivatives are dendrimers and hyperbranched polymers because of their high density of tunable functional moieties and their ability to interact with biosystems. Herein, we have reviewed recent advances on designing graphene-dendritic polymer hybrids and their applications together with the challenges in the field. [GRAPHICS]