▎ 摘 要
Graphene was prepared using liquid phase exfoliation and dispersed in an alumina matrix using an ultrasonication and powder processing route. Al2O3-graphene composites with up to 5 vol% content were densified (>99%) using SPS. The fracture toughness of the material increased by 40% with the addition of only 0.8 vol% graphene. However for higher graphene contents the improvement in fracture toughness was limited. Graphene changed the mechanism of crack propagation for the alumina matrix from inter-granular to trans-granular. The formation of an inter-connecting graphene network promoted easy fracture for concentration >= 2 vol%. Elastic modulus remained nearly constant for up to 2 vol% and decreased significantly for 5 vol% due to the formation of the inter-connecting graphene network. Fracture toughness measured with the indentation and chevron notch methods were consistent up to 2 vol% and at 5 vol% the percolating network of graphene resulted in easy crack propagation with significant discrepancy between the results for the two methods. Crown Copyright (C) 2013 Published by Elsevier Ltd. All rights reserved.