▎ 摘 要
Under the condition of constant thickness, improving the low-frequency sound absorption performance of conventional sound-absorbing materials is a challenging research topic. To address this issue, a new reduced graphene oxide/polyvinyl alcohol (RGO/PVA) porous composite ceramic was fabricated using freeze-drying and optimized by redesigning the internal connecting pores of porous ceramic matrixes with a reticular microstructure using RGO and PVA. The as-prepared porous structure showed significant enhancement in the low-frequency sound absorption band compared with pristine porous ceramics. In addition, the hybrid porous ceramics exhibited low thermal conductivity. These favorable properties indicate that the hybrid sound-absorbing ceramics have potential application prospects for noise reduction in the fields of construction and electrical and mechanical devices.