• 文献标题:   Capacitive Sensing of Intercalated H2O Molecules Using Graphene
  • 文献类型:   Article
  • 作  者:   OLSON EJ, MA R, SUN T, EBRISH MA, HARATIPOUR N, MIN KM, ALURU NR, KOESTER SJ
  • 作者关键词:   graphene, sensory varactor, capacitance, water
  • 出版物名称:   ACS APPLIED MATERIALS INTERFACES
  • ISSN:   1944-8244 EI 1944-8252
  • 通讯作者地址:   Univ Minnesota Twin Cities
  • 被引频次:   19
  • DOI:   10.1021/acsami.5b07731
  • 出版年:   2015

▎ 摘  要

Understanding the interactions of ambient molecules with graphene and adjacent dielectrics is of fundamental importance for a range of graphene-based devices, particularly sensors, where such interactions could influence the operation of the device. It is well-known that water can be trapped underneath graphene and its host substrate; however, the electrical effect of water beneath graphene and the dynamics of how the interfacial water changes with different ambient conditions has not been quantified. Here, using a metal-oxide-graphene variable-capacitor (varactor) structure, we show that graphene can be used to capacitively sense the intercalation of water between graphene and HfO2 and that this process is reversible on a fast time scale. Atomic force microscopy is used to confirm the intercalation and quantify the displacement of graphene as a function of humidity. Density functional theory simulations are used to quantify the displacement of graphene induced by intercalated water and also explain the observed Dirac point shifts as being due to the combined effect of water and oxygen on the carrier concentration in the graphene. Finally, molecular dynamics simulations indicate that a likely mechanism for the intercalation involves adsorption and lateral diffusion of water molecules beneath the graphene.