• 文献标题:   Exploring the correlation between MoS2 nanosheets and 3D graphene-based nanostructures for reversible lithium storage
  • 文献类型:   Article
  • 作  者:   SON Y, LEE JS, CHOI M, SON Y, PARK N, KO M, JANG JH, PARK M
  • 作者关键词:   graphene, mos2, battery, nanostructure, lithium storage anode
  • 出版物名称:   APPLIED SURFACE SCIENCE
  • ISSN:   0169-4332 EI 1873-5584
  • 通讯作者地址:   UNIST
  • 被引频次:   4
  • DOI:   10.1016/j.apsusc.2018.07.027
  • 出版年:   2018

▎ 摘  要

Graphene-based materials are an attractive lithium storage material for next-generation lithium-based batteries due to its high capacity, surface area and conductivity. However, one of the major problems for its broad application in batteries is a large irreversible capacity, and the poor cycle stability and low rate capability remain. Here, we report a MoS2-stabilized hierarchical three-dimensional graphene-based nanostructure, in which the MoS2 layer acts as a stabilizer as well as an active material. We show that the presence of MoS2 thin layer adjacent to the graphene surface can improve lithium storage capability by improving lithium ion diffusion property with fast Li-ion transport kinetic. On the basis of experimental and theoretical approaches, we ascribe the improved reversible lithium storage to the unusual reversible Li-MoS2 redox reaction and charge distribution on the graphene and MoS2 interlayers. These findings will provide a potential new direction in the design of electrode materials for advanced lithium storage technologies.