• 文献标题:   Defect mediated lithium adsorption on graphene-based silicon composite electrode for high capacity and high stability lithium-ion battery
  • 文献类型:   Article
  • 作  者:   CHANG HJ, PARK MS, KIM JH, MOON J
  • 作者关键词:   lithiumion battery, defected graphene, graphenesilicon composite, first principle calculation, electro chemomechanic
  • 出版物名称:   JOURNAL OF ELECTROANALYTICAL CHEMISTRY
  • ISSN:   1572-6657 EI 1873-2569
  • 通讯作者地址:  
  • 被引频次:   1
  • DOI:   10.1016/j.jelechem.2023.117179
  • 出版年:   2023

▎ 摘  要

Carbon-coated silicon materials are considered as promising anode materials in high-capacity lithium-ion bat-teries (LIBs). Theoretically, using graphene as the anode material in the LIB would afford high electrical con-ductivity, mechanical stability of Si, and suppression of the unstable solid-electrolyte interface. However, its usage is hindered by its electrochemical characteristic, which is not electrochemically active when combined with lithium. Therefore, research on graphene as the anode and coated material in LIBs has been conducted using defect engineering to enhance the storage capacity of graphene. Although the electrochemical character-istics of various defects in graphene have been studied experimentally and theoretically, graphene-based com-posite anode materials such as graphene-silicon composite electrodes have rarely been studied from the electrochemical and mechanical perspectives. In this study, lithium adsorptions are conducted on various defected graphene and graphene-silicon composites using density functional theory calculation. The formation energies of Li on the various defected graphene are assessed, and the mechanical strengths of the graphene-sil-icon composites are analyzed. Our calculations validate that the defects in graphene enhance the electrochem-ical adsorptions and interfacial mechanical strengths of the graphene and graphene-silicon composites. During lithiation, the defects mediate greater interfacial adhesion of the silicon-graphene composite. Hence, we elu-cidate that defected graphene increases the electro-chemo mechanical stabilities of silicon composites in high-capacity LIBs.