▎ 摘 要
Two-dimensional (2D) materials with Dirac cones exhibit rich physics and many intriguing properties, but the search for new 2D Dirac materials is still a current hotspot. Using the global particle-swarm optimization method and density functional theory, we predict a new stable graphene-like 2D Dirac material: a Be3C2 monolayer with a hexagonal honeycomb structure. The Dirac point occurs exactly at the Fermi level and arises from the merging of the hybridized p(z) bands of Be and C atoms. Most interestingly, this monolayer exhibits a high Fermi velocity in the same order of graphene. Moreover, the Dirac cone is very robust and retains even included spin-orbit coupling or external strain. These outstanding properties render the Be3C2 monolayer a promising 2D material for special electronics applications.