▎ 摘 要
We propose a graphene plasmonic structure by applying two graphene layers mingled with a thin gold layer in a silicon grating. By utilizing the finite-difference time-domain (FDTD) method, we investigate the optical response of the system, and observe that the design achieves dual tunable electromagnetically induced transparency (EIT)-like effect at terahertz frequencies. The EIT-like effect arises from the destructive interference between the grapheme-layer bright modes and the gold-layer dark mode. The EIT-like phenomenon can be adjusted by the Fermi level, which is related to the applied voltage. The results show that the group delay of the present structure reaches 0.62 ps in the terahertz band, the group refractive index exceeds 1200, the maximum delay-bandwidth product is 0.972, and the EIT-like peak frequency transmittance is up to 0.89. This indicates that the device has good slow light performance. The proposed structure might enable promising applications in slow-light devices.