• 文献标题:   Evidence of electronic cloaking from chiral electron transport in bilayer graphene nanostructures
  • 文献类型:   Article
  • 作  者:   LEE K, LEE S, EO YS, KURDAK CY, ZHONG ZH
  • 作者关键词:  
  • 出版物名称:   PHYSICAL REVIEW B
  • ISSN:   2469-9950 EI 2469-9969
  • 通讯作者地址:   Univ Michigan
  • 被引频次:   0
  • DOI:   10.1103/PhysRevB.94.205418
  • 出版年:   2016

▎ 摘  要

The coupling of charge carrier motion and pseudospin via chirality for massless Dirac fermions in monolayer graphene has generated dramatic consequences, such as the unusual quantum Hall effect and Klein tunneling. In bilayer graphene, charge carriers are massive Dirac fermions with a finite density of states at zero energy. Because of their non-relativistic nature, massive Dirac fermions can provide an even better test bed with which to clarify the importance of chirality in transport measurement than massless Dirac fermions in monolayer graphene. Here, we report an electronic cloaking effect as a manifestation of chirality by probing phase coherent transport in chemical-vapor-deposited bilayer graphene. Conductance oscillations with different periodicities were observed on extremely narrow bilayer graphene heterojunctions through electrostatic gating. Using a Fourier analysis technique, we identified the origin of each individual interference pattern. Importantly, the electron waves on the two sides of the potential barrier can be coupled through the evanescent waves inside the barrier, making the confined states underneath the barrier invisible to electrons. These findings provide direct evidence for the electronic cloaking effect and hold promise for the realization of pseudospintronics based on bilayer graphene.