▎ 摘 要
The effective reduction of graphene oxide (GO) and incorporation of dopant elements on flexible soft substrates, such as plastics, polymers, papers etc. are of significant importance for energy-related devices and flexible wearable electronics. Here, we demonstrate a novel microwave-excited surface-wave plasma (MW-SWP) process to reduce insulating GO to highly conducting reduced graphene oxide (rGO) on the polyethylene terephthalate (PET) substrate as well as achieving reduction of free-standing GO paper at a near-room temperature. It is also observed that the GO coated on the both top and back surface of a PET substrate reduce simultaneously to obtain conducting rGO films. Most effective reduction was achieved using an argon-hydrogen gas mixture, whereas addition of nitrogen in the gas mixture enabled to incorporate nitrogen dopant in the rGO layers. The GO coated PET and freestanding GO films showed a sheet resistance in the range of M omega/, which reduced to an average value of 1.075 k omega/ and 134 omega/, respectively after the plasma treatment. Thus, the developed MW-SWP process can be significant to produce highly conducting rGO-based graphene films on a soft substrate as well as enabling fabrication of highly conducting freestanding rGO papers.