• 文献标题:   Activation of persulfate by stability-enhanced magnetic graphene oxide for the removal of 2,4-dichlorophenol
  • 文献类型:   Article
  • 作  者:   PANG Y, ZHOU YY, LUO K, ZHANG Z, YUE R, LI X, LEI M
  • 作者关键词:   advanced oxidation technology, sulfate radical, magnetic nanoparticle, graphene oxide, wastewater treatment
  • 出版物名称:   SCIENCE OF THE TOTAL ENVIRONMENT
  • ISSN:   0048-9697 EI 1879-1026
  • 通讯作者地址:   Changsha Univ
  • 被引频次:   1
  • DOI:   10.1016/j.scitotenv.2019.135656
  • 出版年:   2020

▎ 摘  要

A stability-enhanced magnetic catalyst, composed of alpha-Fe2O3@Fe3O4 shell-core magnetic nanoparticles and graphene oxide (MGO), was prepared and characterized by scanning electron micrope (SEM), X-ray diffraction (XRD), vibrating sample magnetometer (VSM), and Brunauer-Emmett-Teller (BET). Catalyst synthesis was used to efficiently activate persulfate for the removal of 2,4-dichlorophenol (2,4-DCP). A magnetic nanoparticle:GO mass ratio of 5 (MGO-5) exhibited a better catalytic efficiency and could be effectively reused four times. The influences of the pollutant, catalyst, and oxidant concentrations were investigated, and the intrinsic relationships among these factors and the degradation kinetic constant were evaluated by a fitting method. It was found that the catalytic degradation process in the MGO-5-persulfate-2,4-DCP system was most likely dominated by an interfacial catalytic reaction, with an activation energy of 13.88 kJ/mol. Radical quenching experiments and electron paramagnetic resonance (EPR) analysis indicated that both sulfate radicals (SO4 center dot(-)) and hydroxyl radicals (center dot OH) were responsible for 2,4-DCP removal, but surface-bounded SO4 center dot(-) played a greater role. Chloride ions at a concentration of 0-60 mg/L had no effect on 2,4-DCP removal. The proposed advanced oxidation technology has potential applications for the practical removal of aqueous organic pollutants. (C) 2019 Elsevier B.V. All rights reserved.