▎ 摘 要
Electronic, transport, and spin properties of grain boundaries (GBs) are investigated in electrostatically doped graphene at finite electron densities within the Hartree and Hubbard approximations. We demonstrate that depending on the character of the GBs, the states residing on them can have a metallic character with a zero group velocity or can be fully populated losing the ability to carry a current. These states show qualitatively different features in charge accumulation and spin polarization. We also demonstrate that the semiclassical Thomas-Fermi approach provides a satisfactory approximation to the calculated self-consistent potential. The conductance of GBs is reduced due to enhanced backscattering from this potential.