▎ 摘 要
Electrolytic exfoliation of graphite is a promising way to produce graphene quickly, inexpensively, and in an environmentally friendly manner. In this research, sodium dodecylbenzenesulfonate (SDBS), a commonly used anionic surfactant, was dissolved in 1 M H2SO4 to produce SDBS-graphene via electrolytic graphite exfoliation. The AFM analysis validated the thickness of few-layer of SDBS-graphene between 5 and 15 nm. Then, a symmetric coin-cell (CR2032) supercapacitor (SC) comprised of SDBS-graphene and rGO (synthesized via Hummer's method) was assembled with 0.5 M H2SO4 as an electrolyte. The highly exfoliated SDBS-graphene demonstrated a greater capacitive electrochemical response than rGO. The CV and GCD techniques revealed that the specific capacitance of SDBS-graphene was 150 F g- 1 at 0.25 A g- 1 with 20.4 Wh kg-1 of energy density and 494 W kg-1 of power density and that its percentage capacitive retention remained 95 % after 10,000 cycles at 3 A g- 1, compared to the specific capacitance of reduced graphene. In addition, a cylindrical cell SC (CR32650) with SDBS-graphene demonstrated a capacitance of 220 F at 100 mA, along with an energy density of 33 kWh and a power density of 55 kW. This suggests that exfoliated SDBS-graphene may be utilized in SCs with high efficiency and long-term durability.