▎ 摘 要
A facile method is proposed to prepare poly-o-phenylenediamine (PoPD) noncovalent functionalized graphene (G)-reinforced polyimide (PI) nanocomposites. PoPD-G exhibited excellent dispersibility in various organic solvents. The structures of PoPD-G were characterized by Raman and UV spectrum, which verified the pi-pi interactions between PoPD and G. The effective exfoliation of graphene nanosheets was investigated by observation of the morphology of PoPD-G with SEM, SPM, and TEM. Compared to PI/G composites, the interfacial adhesion between graphene nanosheets and PI matrices promoted efficient stress transfer from PI chains to PoPD-G nanofillers. Polyimide nanocomposites with different incorporations of PoPD-G exhibited outstanding thermal properties. It is interesting to note that only 0.5 wt% PoPD-G-reinforced PI composites increased by 20.8% in hardness, enhanced by 84.0% in storage modulus, and reduced by 72.8% in wear rate compared with neat PI. The eminent enhancement was attributed to the facile dispersion of graphene nanosheets and strong interface adhesion between PI and PoPD-G.