• 文献标题:   Synthesis of Copper Graphene Materials Functionalized by Amino Acids and Their Catalytic Applications
  • 文献类型:   Article
  • 作  者:   HUANG Q, ZHOU LM, JIANG XH, ZHOU YF, FAN HW, LANG WC
  • 作者关键词:   functionalized graphene, copper, catalyst, amino acid, narylation
  • 出版物名称:   ACS APPLIED MATERIALS INTERFACES
  • ISSN:   1944-8244
  • 通讯作者地址:   China West Normal Univ
  • 被引频次:   39
  • DOI:   10.1021/am502586c
  • 出版年:   2014

▎ 摘  要

Graphene oxide and its derivative have attracted extensive interests in many fields, including catalytic chemistry, organic synthesis, and electrochemistry, recently. We explored whether the use of graphene after chemical modification with amino acids to immobilize copper nanoparticles could achieve a more excellent catalytic activity for Narylation reactions. A facile and novel method to prepare copper supported on amino-acid-grafted graphene hybrid materials (A-G-Cu) was first reported. The as-prepared hybrid materials were characterized by a variety of techniques, including Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, X-ray diffraction, scanning electron microscopy, atomic force microscopy, transmission electron microscopy, and inductively coupled plasma atomic emission spectrometry. The results showed that the morphology, distribution, and loading of copper nanopartides could be well-adjusted by controlling the type of amino acids grafted on graphene. Moreover, most A-G-Cu hybrid materials could catalyze N-arylation of imidazole with iodobenzene with yields more than 90%, while the copper supported on graphene (G-Cu) displayed a yield of just 65.8%. The high activity of A-G-Cu can be ascribed to the good synergistic effects of copper nanoparticles (Cu NPs) and amino-acid-grafted graphene.