▎ 摘 要
An electrochemical sensor based on electrochemically reduced graphene oxide (ErGO), carboxylated carbon nanotubes (cMWCNT), and gold nanoparticles (AuNPs) (GCE/ErGO-cMWCNT/AuNPs) was developed for the simultaneous detection of dihidroxybenzen isomers (DHB) hydroquinone (HQ), catechol (CC), and resorcinol (RS) using differential pulse voltammetry (DPV). The fabrication and optimization of the system were evaluated with Raman Spectroscopy, SEM, cyclic voltammetry, and DPV. Under optimized conditions, the GCE/ErGO-cMWCNT/AuNPs sensor exhibited a linear concentration range of 1.2-170 mu M for HQ and CC, and 2.4-400 mu M for RS with a detection limit of 0.39 mu M, 0.54 mu M, and 0.61 mu M, respectively. When evaluated in tap water and skin-lightening cream, DHB multianalyte detection showed an average recovery rate of 107.11% and 102.56%, respectively. The performance was attributed to the synergistic effects of the 3D network formed by the strong pi-pi stacking interaction between ErGO and cMWCNT, combined with the active catalytic sites of AuNPs. Additionally, the cMWCNT provided improved electrocatalytic properties associated with the carboxyl groups that facilitate the adsorption of the DHB and the greater amount of active edge planes. The proposed GCE/ErGO-cMWCNT/AuNPs sensor showed a great potential for the simultaneous, precise, and easy-to-handle detection of DHB in complex samples with high sensitivity.