• 文献标题:   A novel epsilon-HNIW-based insensitive high explosive incorporated with reduced graphene oxide
  • 文献类型:   Article
  • 作  者:   YU L, REN H, GUO XY, JIANG XB, JIAO QJ
  • 作者关键词:   epsilonhniw, sensitivity, thermal stability, reduced graphene oxide, pbx, slow cookoff
  • 出版物名称:   JOURNAL OF THERMAL ANALYSIS CALORIMETRY
  • ISSN:   1388-6150 EI 1588-2926
  • 通讯作者地址:   Beijing Inst Technol
  • 被引频次:   20
  • DOI:   10.1007/s10973-014-3928-7
  • 出版年:   2014

▎ 摘  要

A novel epsilon-HNIW-based explosive formula with low sensitive and high energy was developed by systematically researching the processes of recrystallization, granularity gradation, and coating of epsilon-HNIW and option of energetic deterrents. The grain size and morphology of HNIW crystals were modified by solvent/antisolvent recrystallization. The epsilon-HNIW particles were graded and coated by emulsion polymerization method with 551 glue. The binder reduced the mechanical sensitivity of epsilon-HNIW significantly and showed good compatibility with epsilon-HNIW, but also weakened the decomposition enthalpy. With the purpose of developing new energetic deterrents in insensitive high explosive formulations, novel carbon materials graphene oxide (GO) and reduced graphene oxide (rGO) were prepared and incorporated in plastic-bonded explosive (PBX) formulations. For comparison, the effects of conventional deterrent flake graphite were also involved. It turned out that the mechanical sensitivities of epsilon-HNIW/551 glue have all reduced to some extent with the incorporation of graphite, GO, and rGO. Flake graphite induced the PBX decompose earlier slightly and weaken the heat output. The addition of GO resulted in noticeable antedating decomposition of epsilon-HNIW/551 glue although remarkably increased the decomposition heat. The formula of epsilon-HNIW/551 glue/rGO provided a moderate growth in decomposition heat and best thermal stability. In slow cook-off tests, the formulas of epsilon-HNIW/551 glue and epsilon-HNIW/551 glue/rGO showed good thermal stability and might be qualified to apply safely under 200 A degrees C. Comprehensively considering the mechanical sensitivity, thermals stability, energy performance, and practical application, epsilon-HNIW/551 glue/rGO is supposed to be an eligible insensitive high-energy PBX formula.