▎ 摘 要
We investigate a type of matched infrared soliton pairs based on four-wave mixng (FWM) in Landau-quantized graphene by using density-matrix method and perturbation theory. The linear and nonlinear dynamical properties of the graphene system are first discussed, and, in particular, we focus on the signatures of nonlinear optical response. Then we present analytical solutions for the fundamental bright and dark solitons, as well as bright two-soliton, which are in good agreement with the results of numerical simulations. Moreover, due to the unusual dispersion relation and chiral character of electron states, we find that the matched spatial soliton pairs can propagate through a two-dimensional crystal of graphene and their carrier frequencies are adjustable within the infrared frequency regimes. Our proposed scheme may provide a route to explore the applications of matched infrared soliton pairs in telecommunication and optical information processing.