▎ 摘 要
The development of approaches to the integration of metal-organic frameworks (MOFs) with solid substrates is an urgent problem of the physical chemistry of thin films, whose solution will provide the compatibility of MOFs with modern planar technologies. It has been shown that it is possible to implement the layer-by-layer assembly of a coordination structure based on N,N'-di(propanoic acid)-perylene-3,4,9,10-tetracarboxylic diimide as an organic linker and zinc acetate as a binding metal cluster on the substrates coated with monolayers of graphene oxide particles. According to absorption spectroscopy and X-ray diffraction data, the two-dimensional geometry of the template carbon layer provides the uniform growth of a crystalline coordination structure on the solid substrate. The retention of the fluorescence intensity of the perylene linker in this structure indicates that its molecules are not aggregated via the - stacking mechanism. The scanning electron microscopy data have shown that the films have a uniform micromorphology. The obtained results confirm the applicability of graphene oxide monolayers as universal functional coatings, which provide the attachment and uniform growth of MOF films on diverse solid substrates.