▎ 摘 要
We investigate ground and excited state transport through small (d approximate to 70 nm) graphene quantum dots. The successive spin filling of orbital states is detected by measuring the difference between ground-state energies as a function of a magnetic field. For a magnetic field in-plane of the quantum dot the Zeeman splitting of spin states is measured. The results are compatible with a g factor of 2, and we detect a spin-filling sequence for a series of states which is reasonable given the strength of exchange interaction effects expected by comparing Coulomb interaction energy and kinetic energy of charge carriers in graphene.