▎ 摘 要
We propose a defect-to-edge topological quantum quench protocol that can efficiently inject electric charge from defect-core states into a chiral edge current of an induced Chern insulator. The initial state of the system is assumed to be a Mott insulator, with electrons bound to topological defects that are pinned by disorder. We show that a "critical quench" to a Chern insulator mass of the order of the Mott gap shunts charge from defects to the edge, while a second stronger quench can trap it there and boost the edge velocity, creating a controllable current. We apply this idea to a skyrmion charge in the v = 0 quantum Hall antiferromagnet in graphene, where the quench into the Chern insulator could be accomplished via Floquet driving with circularly polarized light.