▎ 摘 要
By evenly mixing polytetrafluoroethylene-silicon energetic materials (PTFE-Si EMs) with tin oxide (SnO2) particles, we demonstrate a direct synthesis of graphene-encapsulated SnO2 (Gr-SnO2) nanoparticles through the self-propagated exothermic reaction of the EMs. The highly exothermic reaction of the PTFE-Si EMs released a huge amount of heat that induced an instantaneous temperature rise at the reaction zone, and the rapid expansion of the gaseous SiF4 product provided a high-speed gas flow for dispersing the molten particles into finer nanoscale particles. Furthermore, the reaction of the PTFE-NPs with Si resulted in a simultaneous synthesis of graphene that encapsulated the SnO2 nanoparticles in order to form the core-shell nanostructure. As sodium storage material, the graphene-encapsulated SnO2 nanoparticles exhibit a good cycling performance, superior rate capability, and a high initial Coulombic efficiency of 85.3%. This proves the effectiveness of our approach for the scalable synthesis of core-shell-structured graphene-encapsulated nanomaterials.