▎ 摘 要
Reduced graphene oxide/MnO2 (RGO/M) composites were successfully prepared via one-step hydrothermal routine, in which graphene oxide serviced as the oxidant and Mn2+ as the reducer. The morphology and microstructure of the nanocomposites were characterized by X-ray diffraction (XRD) analysis, X-ray Photoelectron Spectroscope (XPS), Raman spectra (RS), Fourier transform infrared (FTIR) spectroscope and field emission scanning electron microscope (FESEM). In addition, the electrochemical properties of the composite were evaluated by cyclic voltammetry, galvanostatic charge/discharge and electrochemical impedance spectroscopy techniques for supercapacitor applications. The results indicate that the RGO/M composites displayed controllable specific capacitance in acidic electrolytes by adjusting the molar ratio of GO to manganous chloride at a specific hydrothermal reaction condition. In the optimal case, a specific capacitance of 277 F/g can be obtained in 1 mol/L H2SO4 at a scan current density of 1 A/g, with a capacitance retention of 98% after 500 cycles.