• 文献标题:   Confining NiCo2O4 nanoparticles in nitrogen doped carbon nanotubes embedded in 3D porous graphene aerogels for superior lithium storage
  • 文献类型:   Article
  • 作  者:   LIU AR, YU SH, LU XJ, LIU SQ
  • 作者关键词:   lithium ion battery, graphene aerogel
  • 出版物名称:   JOURNAL OF ELECTROANALYTICAL CHEMISTRY
  • ISSN:   1572-6657 EI 1873-2569
  • 通讯作者地址:  
  • 被引频次:   0
  • DOI:   10.1016/j.jelechem.2023.117565 EA MAY 2023
  • 出版年:   2023

▎ 摘  要

The huge volume expansion and poor electrical conductivity have seriously hindered the further development of redox-based electrode materials such as NiCo2O4 (NCO). Herein, we designed a novel NiCo2O4@nitrogendoped carbon nanotube@3D graphene (NCO@CT@3DG) aerogel through hydrothermal assembly and hightemperature carbonization. In this aerogel, graphene nanosheets constructed the framework of the aerogel and NCO nanoparticles were deposited on the surface of nitrogen-doped carbon nanotubes which served as active materials for Lithium-ion batteries. The NCO decorated carbon nanotubes connecting the graphene sheets served as the scaffold to support the 3D cross-linked graphene network. As anode material of lithiumion batteries, the optimized NCO@CT@3DG exhibited excellent electrochemical properties with high capacity as well as superior cycle and rate performance, which could maintain the discharge specific capacity of 810.3 mAh/g at the current density of 1.0 A/g after 500 cycles. The excellent properties are ascribed to the synergistic effect of each individual component and the unique graphene aerogels hybrid structure. This study demonstrates the great application prospects of 3DG aerogel hybrid structure in improving electrochemical properties of active materials with high volume expansion and poor conductivity.