▎ 摘 要
We present low-temperature magnetotransport measurements on graphene rings encapsulated in hexagonal boron nitride. We investigate phase-coherent transport and show Aharonov-Bohm (AB) oscillations in quasiballistic graphene rings with hard confinement. In particular, we report on the observation of h/e, h/2e, and h/3e conductance oscillations. Moreover we show signatures of magnetic focusing effects at small magnetic fields confirming ballistic transport. We perform tight-binding calculations which allow us to reproduce all significant features of our experimental findings and enable a deeper understanding of the underlying physics. Finally, we report on the observation of the AB conductance oscillations in the quantum Hall regime at reasonable high magnetic fields, where we find regions with enhanced AB oscillation visibility with values up to 0.7%. These oscillations are well explained by taking disorder into account allowing for a coexistence of hard-and soft-wall confinement.