• 文献标题:   Synthesis of network reduced graphene oxide in polystyrene matrix by a two-step reduction method for superior conductivity of the composite
  • 文献类型:   Article
  • 作  者:   WU N, SHE XL, YANG DJ, WU XF, SU FB, CHEN YF
  • 作者关键词:  
  • 出版物名称:   JOURNAL OF MATERIALS CHEMISTRY
  • ISSN:   0959-9428 EI 1364-5501
  • 通讯作者地址:   Qingdao Univ
  • 被引频次:   144
  • DOI:   10.1039/c2jm33114d
  • 出版年:   2012

▎ 摘  要

Polymer/graphene composites have attracted much attention due to their unique organic-inorganic hybrid structure and exceptional properties. In this paper, we report the synthesis of polystyrene/reduced graphene oxide (PS/r-GO) composites by a two-step in situ reduction technique, which consists of a hydrazine hydrate reduction and a subsequent thermal reduction at 200 degrees C for 12 h. The structure and micromorphology of PS/r-GO composites were characterized by scanning electron microscopy, transmission electron microscopy, X-ray diffraction, Fourier transform infrared spectroscopy, Raman spectroscopy, X-ray photoelectron spectroscopy and thermogravimetric analysis. The results show that the GO can be efficiently reduced by the two-step in situ reduction method, and the r-GO sheets are well dispersed and ultimately form a continuous network structure in the polymer matrix. PS/r-GO composite films (5 wt% GO) are prepared by the hot press molding method, possessing a conductivity as high as 22.68 S m(-1). The superior conductivity arises from the high reduction degree of GO and its high dispersion and the formation of a network structure in the polymer matrix. These polymer/r-GO composites are expected to be applied in multiple electric devices. The techniques for preparing polymer/r-GO composite films could be further extended to other similar systems.