▎ 摘 要
The gold nanoreaction between HAuCl4 and H2O2 is very slow at 50 degrees C, and the nanoenzyme of graphene oxide (GO) greatly catalyzes the nanoreaction to form gold nanoparticles (AuNPs) with high SERS activity in the presence of Vitoria blue 4R (VB4r) molecular probes, strong resonance Rayleigh scattering (RRS), and surface plasmon resonance (SPR) absorption effect. With the increase of GO, the SERS, RRS, and SPR absorptions were enhanced linearly due to the formation of more AuNPs. The rabit antibody of human chorionic gonadotropin (RHCG) strongly adsorbed on the GO surface to inhibit its catalysis. Upon addition of human chorionic gonadotropin (HCG), the RHCG is separated from the GO surface due to the formation of HCG-RHCG specific immunocomplexes, which led to the recovery of GO catalysis. Using the new strategy of immunocontrolling GO catalysis, three types of resonance methods including SERS, RRS, and surface plasmon resonance (SPR) absorption have been developed for detection of HCG.