▎ 摘 要
In this work, performance of dielectric inserted side contact multilayer graphene nanoribbon (Di-side-GNR) coupled interconnects using unconditionally stable finite-difference time-domain (USFDTD) technique has been investigated. The model developed for the same, overcomes the limitation of Courant stability criterion prevalent in the conventional finite-difference time-domain (FDTD) technique. The proposed model accurately analyses the crosstalk effect in copper (Cu), side contact multilayer graphene nanoribbon and Di-side-GNR interconnects. It is found that the crosstalk effect is least in Di-side-GNR amongst the three types of interconnect considered in this study. The proposed model and HSPICE simulation results match closely. Further, for transient analysis USFDTD technique based proposed model takes nearly 1.5 times lesser CPU runtime compared to the conventional FDTD technique.