▎ 摘 要
We explore the optical bistability in aperiodic parity time-symmetric (PT-symmetric) photonic lattices that are composed of Fibonacci sequence dielectrics and graphene at terahertz frequencies. Two Fibonacci sequence dielectrics, viz. aperiodic photonic lattices, are utilized for enhancing band-edge resonances and achieving the electric field localization that can enhance the nonlinearity of graphene. Modulating the gain-loss factor of dielectrics in the PT symmetry lattices further strengthens the nonlinearity effect and, consequently, low threshold bistability is realized. The interval between the upper and lower bistability thresholds enlarges as the momentum relaxation time of graphene changes. Moreover, we show that the bistability threshold can also be flexibly tuned by modulating the graphene chemical potential. The study might be applied in photomemories and optical switches.