• 文献标题:   Electrochemically decorated gold nanoparticles on CVD graphene ChemFET sensor for the highly sensitive detection of As(III)
  • 文献类型:   Article
  • 作  者:   ZHAO G, PHAM T, CHEN Y, SEDKI M, MULCHANDANI A
  • 作者关键词:   chemiresistive sensor, graphene, gold nanoparticle, fieldeffect transistor, arsenic detection
  • 出版物名称:   MICROCHEMICAL JOURNAL
  • ISSN:   0026-265X EI 1095-9149
  • 通讯作者地址:  
  • 被引频次:   0
  • DOI:   10.1016/j.microc.2022.108376 EA JAN 2023
  • 出版年:   2023

▎ 摘  要

In this paper, we report a novel reusable receptor-free chemically sensitive field-effect transistor (ChemFET) sensor for the sensitive detection of As(III) using electrochemical doping of Au nanoparticles (AuNPs)-chemical vapour deposition (CVD) graphene (Gr) sensing film (AuNPs-Gr). The sensor consists of a single-gap gold electrode and a single layer of CVD graphene as a conducting/sensing channel decorated with a thin layer of electrochemically deposited AuNPs to catalyze the electroreduction of As(III) ions onto the sensing channel. A new detection strategy was proposed by measuring the resistance change rate of the AuNPs-Gr sensing channel modified between the source electrode and drain electrode, wherein the resistance change was caused by the electrochemical doping of As(0). The results indicated that the electrochemical doping of As(0) onto the sensing channel led to an increase in resistance through the doping interaction among As(0), AuNPs and graphene, enabling the proposed sensor to have an extraordinary detection performance with a high sensitivity. Moreover, the proposed sensor can be recycled by removing the As(0) deposited on the sensing film with the aid of a simple electrochemical oxidization process. Additionally, the mechanism of the sensing strategy based on the electrochemical n-doping of As(0) into the AuNPs-Gr sensing film was investigated using a top liquid gate electrode. The As(III) concentration detected by the AuNPs-Gr ChemFET sensor was as low as 0.001 mu g/L, demonstrating that such sensors with a compatible sensing strategy can be used to detect As(III) with high sensitivity, easy fabrication, fast response and can be recycled.